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Abstract

An approximate solution to the electromagnetic boundary value
problem consisting of a horizontal cylindrical conductor buried in
a lossy half-space and excited by an arbitrarily oriented magnetic
dipole is found using an iterative perturbation technique in a double
Fourier transform space. This model is used to gain insight into
the anomalous fields due to strong scatterers such as pipes or tracks
which would be in close proximity to an EM mine rescue operation.
The novel three-dimensional aspect of the problem (i.e., the source)
imposes the complexity that the current in the cylinder is not uniform.
The field expressions are ideally suited to evaluation using FFT
algorithm.

Introdnction

The electromagnetic response of an inhomogeneous half-space
continues to be a subject of high interest because of its direct
application to EM prospecting techniques, mine rescue operations,
and location of buried gas or water pipes. By in large, with the
notable exceptions of D'Yakonov (1959), and Hill and Wait (1973),
the theory applied to this class of problems has been restricted to
two-dimensional time harmonic analyses. For example, the February
'71 issue of Geophysics was devoted entirely to numerical solutions
of this type. The comparatively simple sub-case consisting of an
idealized buried cylindrical inhomogeneity has also received considerable
attention (D'Yakonov (1959), Wait (1972), and Howard (1972)). We
comment that D'Yakonov published no numerical results; the approximate
iterated perturbation method due to Wait, which accounted for the
interaction of the air-earth interface and the induced axial monopole
current is readily evaluated. Numerical results based on Wait's
method have been shown to be in complete agreement with the integral
equation solution of Howard (1972). All three of these solutions are
two-dimensional since the primary excitation in each case is taken
to be a uniform line current parallel to the ecylinder.

Herein, we consider a three-dimensional extension of these

solutions. That the extension is non-trivial is attested by the effort
involved in considering such problems in the absence of the air-earth
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interface (Wait, 1960). Thus, the uniform line source is replaced

by a more realistic arbitrarily oriented magnetic dipole in the

earth. This introduces several complications. The most serious

are that we now need a two-dimensional transform representation

and the problem is now intrinsically vector. The vector nature
requires either the introduction of both electric and magnetic potentials
(Wait (1958), Weaver (1970)) or the appropriate Green's function dyadic
(Tai (1971)). For an arbitrary cylinder, the relevant two-dimensional
Fourier integral dyadic can be used with a vector integral equation
formalism. It is, under certain conditions, permissible and much
simpler to by-pass the integral equation technique and use a perturba-
tion analysis.

Thus, to keep the problem tractable, we will assume that the
cylinder is perfectly conducting and electrically small so that only
an axial surface current density has appreciable excitation, This
allows us to perform a perturbation analysis similar to that of Hill
(1970) and Wait (1972) to obtain an iterated approximant of the axial
surface current. Note that in so doing, the features of an air-earth
interface and an arbitrarily oriented magnetic dipole are not compromised.
Hence, the problem remains three-dimensional; however, the sim-
plifying assumptions divide the problem into three almost completely
independent parts - each one of which is a well-defined boundary

value problem.

As an overview, we give in section two a two-dimensional
Fourier integral representation of the magnetic loop in a half-space.
With an eye to the application of this 'incident' field, we represent
the resulting interface fields in terms of magnetic and electric vector
potentials parallel to the cylinder axis which is introduced in the follow-
ing step. In the third.section, we obtain the zeroth order surface
current on the cylinder which includes the 'over and down'' mode
coupling, This is done for one spectral component of the incident
field - i.e., an arbitrarily polarized plane wave constituent.

Then, in the fourth section, we obtain the interface dependent
potentials for a given axial surface current. It then becomes a straight-
forward matter to iterate the correction to the surface current starting
with the zeroth order current obtained in the previous section. The
anomalous fields are, of course, written in terms of the potentials
derived in section four.

II. Two-Dimensional Fourier Integral Incident Field
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Here we consider the well-known problem of a magnetic dipole
in a half-space. Our application, however, requires us to look at:
the problem afresh. The geometry is given in Figure 1.
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Figure 1. Scattering geometry.

Our solution is not standard in that for numerical reasons, it is
preferable to use Cartesian coordinates, and the potentials are

conveniently chosen parallel to the cylinder axis. We require a
solution then to

VX H = -[.uae:- E \ &’L = €&, ¢ LO';_‘/W
vV x E = Lwrxe(;\ + -h—/\) (2.1)
by way of the potentials F and A , il.e., )
H = ./rko v X K + A V XV x E
P°K7_
E = "W (YxFy+ L vxvxg
Kz. K, (2.2)
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For an elementary magnetic dipole, M is given by

M=moE- %), m=1dAi (2.3)
Now for a homogeneous space A = 0 and
-— — —_ 'k — -
F=F Eszkom'elzR L R=|% - % (2. 4)
° 4T R
This, in the representation required, is also written
oo
- _ — AlK LR'(;‘R‘T\ - 2 % z (Y
Fo ——2—2———11§T\_H°m g - e , ®g 7 (KL‘ K ‘Kl )
ETEL 20 2.5)
where Ak =&KXAK7
To account for the interface at z = d, we define
_ Fo + F z £ d _ AT z < d
F=J __ A = . (2. 6)
F z>d [ A z>d
where
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K = (KX \ K7 ) ‘i\
The pertinent solution is
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III. Zeroth Order Surface Current

We now consider the interaction of a plane-wave constituent
of the previous section with the cylinder surface current. Basically,
we require a transverse vector cylindrical wave expansion of a
plane wave constituent of the 'incident' field.

%0 o
o . - hod — — Wy
iex _
g . = % an Sdh > (2, Mgy + BpNepy ) (3.1)
o - %o NSO
; — (3
— (N (i - = (3) vx M
M =7 X (v 0T Bl s T e

() G thx e () W
Vo (hY = 2 Ovpreosnee 1 2 70 (0 o T, 0V B GV G

The M and N functions are orthogonal; it is easy to solve (3.1)
for a_ and bn' Now again we match boundary fields, this time at

the cylinder surface. Thus let

- - i — — (3
€ & - Z° (chenkP (K, + 4Nk, (Ky) (3.2)

and one finds

e ym wpa, d 7 () b (3.3)
““n n (%), n ““n n n .
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The surface current in amperes/meter on a perfectly conducting
body is proportional to the total magnetic intensity H , i.e.,

A - hand ’ ~ .

nXH=Kl . mo=ip (3. 4)
p=2

This condition yields the zeroth order transformed axial surface current

density - _ - A
o ~2 [ RX (K x & V],
K, (K, Ky) = K,é " H:n (KPA\ (3.5)

-
—

° “w - - - L e K % a (3-6)
- = = K K
& = .. ['Kx(-F + £\ Y i x ( x&\l

where

Hence (3.5) becomes
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Kx (K“KY\ - (S 1S
Tap, H, (KP&\ Kf’
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Kx:.LKX\Kr\ + KM(K"\Ky\ (3.7)
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is the interface independent zeroth order axial

Note that K 1
The interface term K (K ) 1is
x2' x

surface current transform.
unfortunately a numerical integral.

We now temporarily assume the current is known; i.e.,

TE) =i K () §(f - a)
x') = i, K (x P -
The excitation potential for this section is thus
—Ao = G (" gt = /= 3
R
Now, substituting (4.1), and G as given by (2.5) into (4.2), and
carrying out the spatial integrations gives

-0 _ IR’ ;—.O ~ 2 -0 _~ . ‘o \
A = ge a (K)d"K , a =i "ZH\:‘:* K (Kx\ T.(Kp“\ (4. 3)
=

> 2
Again, we now introduce potentials A, F* , match fields across

the interface and obtain in the quasi-static approximation

a"(®) = QE)a°(-) , Q) = e2t¥ad LF(RY -« & ]
e+ < <))

F(RY) = KEE(K: S koykE - xD kL (4.4)

Thus, the air-earth interface to first order modifies the potential
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amplitude a® it becomes (1 + Q) a® . In fact, the iteration is
equivalent to a geometric series which formally can be summed

to give as an infinite iterant a®/(1 - Q) . Thus, the corrected
potential A is given by
-~ .-ﬁ&'- K P )
A = &de a® i SEVX L g JIKVX % (4. 5)
1 -Q

and the surface current is, from (3.4),
2T

K (x) = l/p, ¥/3p <A>) ,<A>=;—“§AL§\A@ (4. 6)

F I a
It turns out that since Q 1is exponentially small for large K_,
the averaging integral and the K_ integral do not commute; hence,
we first substract out the asymptotic limit to the integral (4.5)
and add it on in integrated form giving

K (K ) = i () Ki ® [T (x) P ) + 7/2 H(ll) ()| (4.7)
where

~y
X =K_,a, PK g dK Q
An important limiting case of (4.8) is when d+» ®, then P> 0;
it can be shown that the remaining term is then identical to the
exact expression in the absence of the interface. TUsing the key result
(4.7), the anomalous magnetic field Ha in the lower half-space is
given in terms of the potentials A°, A°, and F~ .

I
s
)
+
mr-

H, a - . (4. 8)
where H° depends on the interface only through the current (it

corresponds to A° with iterated current (4.7)). In particular

HY, =0, Hy =-z/p B°, HY, =y/p Bb° (4.9)
where
h° = ia S cos(K. x)K_(K.) J (K, a) HI) (& ) K. dK (4. 10)
x /Txx! Yo't 1 P P P x :

. o
The H term is given by AT, F~ through (2.2). For completeness
these potential coefficients are determined to be

a” = CRe 2 Kx(Kx\ 3‘° (KP«\ Q (K\
z K
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£ oo o PeKaa Ky, AR K (K, T, (Ko a)

L o= 2
FIRY + x K7
(4.11)

This completes the formal solution to our problem.
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